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Abstract. In this paper, we proposed a semi-supervised learning app-
roach to deal with the task of high dimensional Android malware classifi-
cation. Our approach includes a random projection method for reducing
feature dimensionality which would be more efficient than usual feature
selection methods in existing work for the task. We also introduced a new
method of SGD-based SVM with adapted sampling, which was based on
the insight from the confidence and nearest neighbor clustering analy-
sis of input data. The approach was tested on a real-world competition
dataset, and effectiveness of the new method was verified by experi-
mental results. By using the new method, we can even obtain a better
classification accuracy than the best score produced in the competition.

Keywords: SVM · SGD · Adapted sampling · Classification ·
Dimensionality reduction · Android malware

1 Introduction

The concerns over malware threats on mobile devices have been raised since
smart phones become proliferated over last several years. Traditionally signature-
based anti-malware software can’t predict new threats from malicious applica-
tions. Methods based on machine learning have drawn more attention in recent
years.

In machine learning-based methods, it usually needs input data to train a
classification model, which will predict a mobile software’s label, i.e. malicious or
not. The input data can be formed by a vector of Application Interfaces (APIs)
called within an Application Package (APK) file. Android platform provides
tens of thousands of APIs for developers. The number of key APIs ranges from
a few hundred to several thousands [2]. A subset of APIs will be called during
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the runtime of an application. And those API calls within an APK file can be
obtained through reverse engineering.

The learning task here is to classify an android APK file’s label based on such
a feature vector that indicates which APIs have been used within the application.
Recent works in the related field tend to use neural networks or deep learning-
based models as in [7,8], these types of models usually have a huge number of
parameters to train for, and are generally inefficient especially in a high dimen-
sional input space. A simple neural network model was also presented in [17]
with a constrained number of input features. Authors in [12] selected 36 fea-
tures including features of permission, manifest analysis, and domains, and fed
its into a list of classifiers implemented in the WEKA software for predicting
android malware. The highest accuracy was 93.63% for the binary classifica-
tion, and it was achieved by Random Forest (RF). As for feature selection, it
is generally hard to select an optimal subset of features, whereas approximate
methods exist [11]. Another related work as in [3] applied linear Support Vector
Machine (SVM) on multi-modal features including information of permissions,
categories, description and the API usage features. Their results showed that
API calls carried the most essential behavioral information for android malware
detection. A weakness of their method is that the linear SVM model was gener-
ated from solving a quadratic optimization problem by a Newton-based method,
which will make the training process less efficient when there is a large num-
ber of training data. Yuki Maruno et al. [9] also proposed a RF classifier with
only API-based features for the task of android malware detection. However,
RF-based methods usually suffer from high dimensional data, and are often sen-
sitive to results of feature selection. In their method, features were filtered out by
applying a simple suffix-aligned rule based on API names, and their predictive
result is hard to reproduce.

We propose a semi-supervised learning approach for android malware classifi-
cation. The classifier is trained by SVM-based supervised learning in accordance
with suggestions from the statistical analysis of input data. Briefly, our approach
is mainly comprised of the following components:

– SVM model optimized by Stochastic Gradient Descent (SGD).
– Dimensionality reduction on feature vectors by random projection.
– Confidence analysis of training examples, and nearest neighbor clustering

analysis of testing examples without disclosure of its labels .
– Improved SGD-based SVM model with adapted sampling distribution of

training examples.

We employed the approach on a real world dataset from the 8th International
Cybersecurity Data Mining Competition [1]. Experimental results show that the
SGD-based SVM with adapted sampling performs better than the one with a
uniform sampling distribution. And it can even yield a better predictive accuracy
than the competition winner’s best result.

The following Sect. 2 presents the proposed approach, and experimental set-
ting and results will be described in Sect. 3. We will conclude in Sect. 4.
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2 Proposed Approach

The semi-supervised learning approach includes a SGD-based SVM classifying
model, a procedure of feature dimensionality reduction, and statistical analysis
of training and testing data. The purpose is to make the model training more
efficient and effective. The basic idea is to maintain geometric characteristic of
transformed feature space when reducing the number of features, and to figure
out what labeled examples are more important so that SVM during training will
lean on those examples more frequently than others.

First, we introduce the method of feature dimensionality reduction. Second,
we go into details about methods of statistical analysis of training and testing
data, including ones for confidence and nearest neighbor clustering analysis.
Then we will present the algorithm of SGD-based SVM with adapted sampling.

2.1 Random Projection

The main method we employed for feature dimensionality reduction is Random
Projection (RP) [15]. It is a simple geometric technique for reducing the dimen-
sionality of a set of points in Euclidean space while preserving pairwise distances
approximately. The method is especially more suitable for a big data scenario
than Singular Value Decomposition (SVD) [6], another widely used method for
reducing feature dimensions, because of its efficiency. In our experiments, SVD-
based method was also used for comparison with the RP method.

The computation of random projection is indicated by the following formula:

S′ = S · WT

Where S denotes a training or testing data matrix with row and column dimen-
sion as (m, d). The random matrix W consists of r rows and d columns, where r
indicates a lower dimensional number. Each element of W is randomly generated
from a Gaussian distribution with μ = 0, and σ = 1.0. W is also divided element-
wisely by

√
d to approximate its rows as orthogonal basis in the r dimensional

space. The resulted matrix S′ is the transformed lower dimensional data. This
random projection method preserves all relative pairwise distances between the
input feature vectors with high probability [4].

2.2 Confidence Analysis and Nearest Neighbor Clustering

SVM was designed to find out a discriminating hyperplane in high dimensional
feature space to separate two classes with low sample complexity, because that
the hyperplane was determined only by the example points, also called support
vectors, around the discriminated boundary. In many real world applications, the
number of support vectors is expected to be much smaller than the total number
of training examples, and only those support vectors are relevant for generating
the solution model. Previous works [14,16] usually focused on selecting a subset
of training examples in order to speed up the SVM training.
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The confidence measure was originally introduced in [16], used for evaluating
how likely a training example point could be a support vector. Based on these
quantities, a training sample set can be reduced by picking those with high
confident values. A reduced sample set can make traditional SVM training more
efficient.

Intuitively, imaging that drawing a sphere around a training example as large
as possible until it covers a data point from a differently labeled class. Then,
the more data points (of the same labels with the centered example point) are
contained in the sphere, the less likely the centered training example will be
located near the discriminating boundary of a hyperplane.

Given a labeled training sample set X, for each example x, its confidence
measure can be deduced by the following steps:

1. Compute a pair-wise Euclidean distance vector containing distances between
x and any other data points within X.

2. Sort this distance vector in increasing order, and count from the beginning
that the number of elements whose labels are the same as x’s until meeting
a first different label of data example. Denotes this count as N(x).

3. The confidence measure of x is then in inverse proportion to N(x).

Besides the confidence analysis for training examples, we also want to link
this measurement with the testing examples. It’s easier for SVM to successfully
classify data points located far from the discriminating boundary than those
adjacent to.

We also employ the K-Nearest-Neighbor (KNN) method [10] to find the adja-
cent training examples around every testing data point. Statistical analysis of
these neighboring training points can gain us insight for the proximity of testing
points to the decision boundary. For example, given the experimental data set
in Sect. 3, it showed that many of the adjacent training examples around testing
points have small N(x) values. This result inspires us to optimize the training
effect by increasing the sampling frequency of training examples with high con-
fidence measurement. Notice that this process is done without the disclosure of
labels of testing examples.

2.3 SGD-Based SVM with Adapted Sampling

2.3.1 SGD-Based SVM
SVM [13] is an algorithm for learning the hypothesis of halfspaces with preference
for large margin of data points. Assuming that a training sample set consists of
m examples of (xi, yi), where xi is a feature vector, and yi is a corresponding
label, then the model parameter w can be obtained by minimizing a regularized
empirical loss function (based on the Hinge loss) as followed:

min
w

(
λ

2
‖w‖2 +

1
m

m∑
i=1

max{0, 1 − yi〈w, xi〉}
)

(1)

where λ is a regularization parameter.
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The optimization problem can be efficiently solved by the method of SGD [5],
even there is a large number of training examples. Basically, it randomly picks
up an example to calculate an approximate gradient or a sub-gradient if the
gradient did not exist, and then using the gradient to iteratively update the
model parameter. The update rule of w can be further rewritten as:

w(t+1) = − 1
λt

t∑
j=1

vj , (2)

where vj is a sub-gradient of the loss function at w(j) by the chosen random
example at iteration j.

2.3.2 Adapted Sampling
Due to the nature of the SGD-based method, its descending route on the geo-
metric surface of the optimization problem is strongly affected by which training
example it will select at each of time steps, or even by the order of examples
being picked out. These factors are directly influenced by the sampling dis-
tribution over training examples. SGD by default would uniformly picked out
an example. If the distribution is altered, then it will likely cause the model
parameter ending up at a different spot on the geometric surface, which would
potentially make an impact on the method’s ability of generalization.

The adaptation of sampling distribution is mainly based on results of the
confidence analysis of training examples as presented in Sect. 2.2. The smaller
value of N(x) an example has, the more confidently it is close to be a support
vector. Therefore, for a SVM-based method, high confident examples should be
selected more often than others. We also consider the frequency of N(x)-indexed
examples, and give chances to low confident examples.

Finally, the method of SGD-based SVM with adapted sampling is presented
in Algorithm 1.

The algorithm needs a parameter T denoting the total number of iterations,
and θ denoting −∑t

j=1 vj as in Eq. 2. A major difference here is the adapted
sampling distribution for selecting out training examples contrasting with uni-
formly choosing.

3 Experiment

This section first describes the process of data preparation for experiment. It then
shows results of data analysis including confidence analysis of training examples,
and nearest neighbor clustering analysis of testing and training examples. These
results form the inspiration of developing a new method of SGD-based SVM
with adapted sampling. Last, it will present experimental results of predictive
accuracies given by the new method.
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Algorithm 1. SGD-Based SVM with Adapted Sampling
Require: T
1: initialize: θ(1) = 0
2: for t = 1 → T do
3: w(t) = 1

λt
θ(t)

4: Select an example (xi, yi) randomly from the adapted sampling distribution
5: if yi〈w(t), xi〉 < 1 then
6: θ(t+1) = θ(t) + yixi

7: else
8: θ(t+1) = θ(t)

9: end if
10: end for
11: w = 1

T

∑T
t=1 w(t)

12: return w

Table 1. Dimensions of prepared data

Data Dimensions

Training (30897,37107)

Training-label (30897,1)

Testing (30833,37107)

Testing-label (30833,1)

3.1 Data Preparation

The dataset for experiment was originally from a data mining competition
(CDMC 2017) [1]. Training data file includes 30897 rows of API identification
numbers (IDs). Each row represents an Android application (aka an APK) com-
prised of a different number of APIs. There are totally 37107 of unique APIs with
its name provided. The label file for training data contains the same number of
rows, and each row has either a number 1 for labelling malicious class or −1 for
benign class. Testing data file represents 30833 different applications with the
same format. Since the competition had closed, the true labeling of the testing
data was also released.

In the setting of our experiment, the original training and testing data were
extended to full matrices. Each row of application becomes a full scale of API
indicators initialized by zeros. Then, the columns corresponding APIs used by
the application were filled up by 1s. Dimensions, numbers of rows by columns,
of the prepared datasets are shown in Table 1.

The processed datasets of training and testing were essentially high dimen-
sional and sparse matrices, which posed challenges for training SVM models. The
motivation was to turn them into dense matrices with lower number of feature
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dimensions. We employed the RP method as introduced in Sect. 2.1 to transform
the datasets. The best random matrix was selected out by cross-validation method,
and then it was multiplied by both training and testing datasets separately. We
set the reduced feature dimension to number 10000 and 1000, respectively. Then
dimensionality reduced datasets were used in the following experiment.

3.2 Confidence and Nearest Neighbor Clustering Analysis

We computed confidence measurement based on N(x) values introduced in
Sect. 2.2 for training data. Figure 1 shows histogram of N(x) values for the 10000-
feature set, and Fig. 2 shows the counterpart for the 1000-feature set. The density
curve lines were formed by the method of smooth spline regression. These two
figures show almost the same pattern that a majority of training examples has
relatively small N(x) values (aka highly confident data points), and as the N(x)
values get increased, the amount of corresponding examples is rapidly decreased.
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Fig. 1. Histogram of N(x) values
with the RP:10000 dataset
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Fig. 2. Histogram of N(x) values with
the RP:1000 dataset

Next, we used testing examples as centroids to cluster training examples
around them on the 10000-feature set. It gathered 10 nearest neighboring train-
ing examples for each of testing examples, and computed average N(x) values
and Euclidean distances between centroids and neighbored points within every
neighborhood. Histogram Fig. 3 shows that many testing examples have a neigh-
borhood of relatively small N(x) values of training examples, and those neighbors
are also very close in Euclidean distance to their testing centroids as shown in
Fig. 4. Imaging that a large number of testing points are located very closely
to the potentially discriminating boundary supported by high confident training
points. This phenomenon would wield challenges for SVM-based methods.
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Fig. 3. Histogram of average N(x)
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Fig. 4. Histogram of average Euclidean
distances

Based on observations from previous figures, the statistical characteristic of
the training and testing datasets suggests that we should put more weights on
low N(x) values of training examples than those of high N(x) values generally
during SGD processing, in order to deal with the hard phenomenon.

3.3 Prediction of SGD-Based SVM with Adapted Sampling

The statistical analysis of confidence and nearest neighbor clustering of the
datasets suggested to alter sampling distribution during SGD processing in order
to select high confident training examples more frequently than low confident
ones. The adapted sampling distribution was directly converted from a smooth
spline regression of frequency data of N(x) values on training examples. The
regression curve lines were drawn on Figs. 1 and 2.

Before applying the Algorithm1, training examples with N(x) values larger
than 400 were filtered out. To evaluate the effectiveness of the SGD-based SVM
with adapted sampling, we compared it to SGD-based SVM with uniform sam-
pling. Both of models were trained 200 trials, with random shuffle of training
examples before each trial. Within every trial, a model was trained with 200
epochs of training set. The λ parameter was fixed to a tuned value during these
experiments. Predictive performances were measured by the accuracy rate that
is the percentage of testing examples being correctly classified.
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Fig. 5. Box plots of accuracy scores with the RP:10000 dataset

We first show the results of the approach applied on the 10000-feature dataset
generated by RP (RP:10000). Figure 5 compares box plots of accuracy scores
given by SGD-based SVM with uniform and adapted sampling distributions, and
each plot was formed by 200 random trials of results. Also, Fig. 6 shows results
with the same setting of experiments as in Fig. 5 but on a different 10000-feature
dataset generated by a truncated SVD method (SVD:10000). The purpose of
comparing with SVD was to validate the RP method of dimensionality reduction.
The detailed statistics of the two sets of box plots are displayed in Table 2.
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Fig. 6. Box plots of accuracy scores with the SVD:10000 dataset
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Fig. 7. Box plots of accuracy scores with the RP:1000 dataset

Table 2. Statistics with the box plots

RP:10000 SVD:10000

Uniform Adapted Uniform Adapted

Median 0.93916 0.93955 0.93570 0.93659

Sd 0.00064 0.00062 0.00162 0.00162

Max 0.94036 0.94097 0.93987 0.94084

Adapted sampling in SGD-based SVM boosts predictive performance over
that with uniform sampling as shown in both of Figs. 5 and 6. With the RP:10000
dataset, It increased median accuracy score by 0.00039, which should not be
undervalued because that the increased amount occupies more than 60% of the
relatively small value span of the standard deviation (Sd). It also pushed the
maximum score from 0.94036 to 0.94097 which already exceeded the championing
result 0.9405 of the competition. The same kind of observations of comparing
adapted sampling with uniform sampling can be found out on Fig. 6 as well
when experimenting with the SVD:10000 dataset. Additionally, these results also
show that the RP is a competitive method of dimensionality reduction in practice
compared with the SVD-based method. As shown in Table 2, performances on the
RP:10000 dataset generally achieved higher scores and lower standard deviation
than its counterparts on the SVD:10000 dataset.

We also experimented with a lower number of feature dimension. Specifically,
the same setting of experiment was repeated on a 1000-feature dataset trans-
formed by the RP method, and its results are shown on Fig. 7. The advantage
of adapted sampling over uniform sampling in SGD-based SVM is more obvious
in the picture than previous ones such that the box framed by upper and lower



30 Q. Shang et al.

quartiles of accuracies given by the adapted sampling’s is completely located
above the box given by the uniform sampling’s, although accuracy scores in this
setting of feature dimension are relatively smaller than those in the 10000-feature
one.

4 Conclusion

In this paper, we presented a semi-supervised learning approach for tackling
with high-dimensional Android malware classification tasks, which incorporated
components such as feature dimensionality reduction, confidence analysis and
nearest neighbor clustering analysis of input data. Within the approach, we also
introduced a new model of SGD-based SVM with adapted sampling. Experimen-
tal results on a real-world competition’s dataset show that the performance of
our sampling-adapted SGD-based SVM is statistically better than the original
SGD-based SVM with uniform sampling. It can even achieve a more accurate
result than the champion’s score in the competition.
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