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The constrained power source given by batteries has become one of the biggest hurdles for wireless sensor networks to prevail. A
common technique to reduce energy consumption is to put sensors to sleep between duties. It leads to a tradeoff between making
a fewer number of observations for saving energy while obtaining sufficient and more valuable sensing information. In this paper,
we employ two model-based approaches for tackling the sensor scheduling problem. The first approach is to apply our corrected
VoIDP algorithm on a chain graphical model for selecting a subset of observations that minimizes the overall uncertainty. The
second approach is to find a selection of observations based on Gaussian process model that maximizes the entropy and the
mutual information criteria, respectively. We compare their performances in terms of predictive accuracies for the unobserved
time points based on their selections of observations. Experimental results show that the Gaussian process model-based method
achieves higher predictive accuracy if sensor data are accurate. However, when observations have errors, its performance degrades
quickly. In contrast, the graphical model-based approach is more robust and error tolerant.

1. Introduction

The technology of wireless sensor networks has been popular
for more than a decade in both academia and industry.
Through the observations obtained by tiny embedded
wireless sensors, we can have a better understanding of
the natural environment, human activities, and their inter-
actions. Researchers have been trying to turn the current
relatively small-scale wireless sensor networks to a future
generation of large-scale, energy-sustainable, and extensively
long-standing deployments. One of the biggest hurdles is
the constrained power source. Today’s wireless sensors are
mostly battery powered. It is not a viable way for human
intervention to replace the batteries for thousands of wireless
sensor nodes. The high maintenance overhead prevents the
wireless sensing technology from prevailing in real-world
large-scale applications.

A common technique for extending the lifetime of a
wireless sensor network is to reduce its duty cycles, that is,
a sensor wakes up for a small amount of time in a fixed
period of interval to sense and go to sleep the rest of the time.
Besides reducing sensing times for saving energy, it would be

desirable to have the informative values obtained from the
sensing data as high as possible. The observations should be
worth of their energy costs. This is even more important for
the next generation of scalable wireless networked sensors.

Tomorrow’s sensors will be much smaller and energy
sustainable. They can harvest energy from the environment
[1]. The ambient power sources in their surrounding such
as heats, mechanical movements, electromagnetic induction,
and electrochemical reactions make sensing more sustainable
and hassle free. However, energy harvesting on wireless
sensors also brings a lot of challenges. First of all, the ambient
power supply is often intermittent, and the smaller the sensor
nodes are, the less power they can store. Moreover, the
harvested energy usually needs to be accumulated to reach
a certain level before being capable of performing some
operations like taking a sensor reading or transmitting a
packet. In such situations, the energy harvested sedulously
should never be taken for granted. Instead, every sensing
observation paid by the harvested energy should be as
rewarding as possible.

Making optimal scheduling of observations with a lim-
ited power budget to maximize their information gains has
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become an important problem in real-world applications. It
is a trade-off between obtaining more and useful informa-
tion versus making less observations. The optimization of
selecting observations can be considered as a subset selection
problem. For example, in a task of monitoring indoor
temperature, if a wireless sensor is deployed to observe for
only once per hour, and we want to turn on the sensor
k times for a day, then it becomes such a subset selection
problem that k out of the total 24 time points are chosen
so that the k observations will be the best selection among
the other options for having the most accurate predictions of
temperature readings at the unobserved time points.

In the context of statistics, the problem of subset selection
or variable selection determines a subset of variables and
eliminates the rest from usually a linear regression model,
in order to increase predictive accuracy or to get the “big
picture” with the strongest effects of predictors [2, 3]. But
the selection of variables are usually for predicting only a
single variable of interest. However, in the sensor scheduling
case, the subset selection needs to predict the temperature
distribution that covers all the unobserved time points.

Probabilistic inference in graphical models [4] provides
an effective tool to deal with the quantification of uncertainty
existed in the subset selection problem. The optimal subset of
observations is the one that minimizes the uncertainty of the
posterior conditional probability distribution of the unob-
served variables. Hidden Markov models (HMMs), the chain
graphical models, are often used for modelling time series
data. The posterior conditional probability of unobserved
variables given observations can be efficiently computed on
an HMM. The VoIDP algorithm [5] was claimed to be
the first optimal algorithm for efficiently making the subset
selection on the chain graphical models. The name “VoIDP”
was after its usage of dynamic programming approach to
optimize the information value. We corrected the original
VoIDP algorithm by fixing a mistake in it [6]. In this paper,
we apply the corrected version of VoIDP algorithm on an
HMM to solve the subset selection problem for sensor
scheduling.

Gaussian process (GP) is a generalization of linear
regression based on multivariate normal distributions [7]. It
is often applied to spatial monitoring problems [8, 9]. Greedy
methods based on heuristics, such as entropy and mutual
information, can efficiently make a selection of time points.
The mutual information [10] criterion, which measures
entropy reduction, was shown to have better solutions
than the entropy criterion in a couple of sensor placement
problems [8]. In this paper, we use the GP-based approach
with both the entropy and mutual information heuristics to
solve the sensor scheduling problem.

In summary, the objective of the sensor scheduling
problem is to select a subset of time points to turn on a sensor
and keep it off at the other time to minimize prediction
errors at unobserved time points. Our contribution is
employing the GP model-based selection approach and our
corrected version of VoIDP algorithm based on graphical
models to solve the scheduling problem and comparing their
performances. The GP-based approach is more data driven
than the graphical model-based approach. But the latter,

such as an HMM, can capture the underlying structures of
the latent variables that determine the observational values
in time series. Through comparison experiments, we find
out that the GP-based selection approach achieves lower
prediction error than the HMM-based approach given with
accurate observations. However, the HMM-based selection
approach performs more stably and robustly than the GP-
based approach with erroneous observations.

We will briefly describe the graphical model-based,
particularly HMM-based, selection approach in Section 2,
and the GP-based selection approach in Section 3. The
experimental results will be presented and discussed in
Section 4. Following that are the conclusions.

2. Probabilistic Graphical-Model-Based
Observation Selection

A sensor’s time series of observations can be modeled
using a probabilistic graphical model, such as an HMM.
Each observation variable at a timepoint has a distribution
over some hidden states such as different time periods or
some events. Any observations made on the chain graphical
model will contribute to the predictions of values for other
unobserved variables. But the degree of the contributions
depends on the selection of observations.

The quality of a selection of observations is measured
based on how the observation subset changes the shape of
the probability distribution of an unobserved variable. The
probability distribution of any unobserved variable condi-
tioned on a subset of observed variables can be efficiently
computed using a trained HMM. A utility reward can thus
be defined by the entropy on the posterior conditional
probability distribution. When a subset of observation
variables is selected, an expected total reward across the
entire time chain is computed. Hence, the sensor scheduling
problem can be formulated as a subset selection problem on
a chain graphical model as follows.

Given random variables XV = (X1, . . . , Xn), a subset of
the variables, XA = (Xi1 , . . . , Xik ) is observed as xA. P(XV |
XA = xA) is the conditional observation distribution
over all variables given the observation xA. A total reward
R(P(XV | XA = xA)) is also given. The subset selection
problem is

A∗ = arg maxA

∑

xA

P(XA = xA)R(P(XV |XA = xA)), (1)

where the expected total reward is used because the future
observations of XA are unknown. The selections are made
based on the model before knowing any observational values.
Because of conditional independency on chain graphical
models, the expected total reward to maximize in (1) is also
the summation of all the expected local rewards, where an
expected local reward Rj(X j | XA) equals to

∑
xA
P(XA =

xA)Rj(X j | xA). A local reward Rj(X j | xA) depends on
P(X j | XA = xA), which is the marginal distribution of
variable X j conditioned on observations XA = xA. We
can define the reward by using conditional entropy, that is,
Rj(X j | xA) = −H(X j | xA) = ∫

P(xj , xA)log2P(xj |
xA)dxj .
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The conditional independence property of chain graphi-
cal models simplifies the evaluation of P(X j | XA). If only
the observations made before a time point are used, then the
evaluation of P(X j | XA) only depends on P(X j | Xi),
where Xi is the closest observation made before j. Moreover,
the conditional independence property also decomposes the
expected total reward for the entire chain into the local
rewards for subchains that are separated by the observations.
This important property inspired an efficient approximate
algorithm based on the divide-and-conquer strategy [5].

The subset selection problem in (1) is a combinatorial
optimization problem like the Knapsack problem, although
its utility function is more computationally complicated.
It is an NP-hard problem. The Knapsack problem admits
a pseudopolynomial time algorithm, and all known such
algorithms for NP-hard problems are based on dynamic
programming [11].

The authors in [5, 12] developed an algorithm called
VoIDP to solve the subset selection problem, and it was
claimed to be the first optimal algorithm for selecting the
optimal observations on chain graphical models. It imple-
ments a dynamic programming approach that exploits the
chain structured models to efficiently evaluate the expected
total reward. The time complexity of the algorithm was
proved to be (1/6n3 + O(n2))B given budget B in terms of
the number of evaluations of the rewards, where n = |V|.
Although it works efficiently and optimally with a chain
graphical model, it is still much harder to be applied on
more general forms of graphical models. It was proved that
the problem of selecting a subset of observations for even
discrete poly-tree is computational intractable.

We found out a mistake in the originally published
VoIDP algorithm that fails to give correct solution. We
corrected the mistake and presented an improved version
of the algorithm in [6]. In the experiments, we will use the
corrected VoIDP algorithm that will be briefly presented in
what follows. Once the optimal observations are selected,
the predictive value will be calculated by taking the expected
mean of a posterior conditional observation distribution.

Algorithm 1 shows the corrected version of VoIDP. The
first part of the algorithm dynamically computes a three-
dimension (a, b, and k) table, where a and b are the two ends
of a chain, and k is the budget. Each cell in the table is a
tuple of two elements: La : b(k) and Φa : b(k). La:b(k) represents
the optimal expected total reward of the subchain a : b
with the budget k. sel( j) is the expected total reward of the
subchain a : b obtained by observing at time point j, and
sel(0) is the reward when no observation is made. Φa : b(k)
stores the j that maximizes the value of sel( j). La : b(0) is the
base case, and the recursion for La : b(k) is either La : b(0) or
maxa<j<b, βj≤k{sel( j)}. It means that we can choose not to
spend any more of the budget to reach the base case, or select
the optimal observation at j with the cost βj . Cj denotes
penalty on the reward by selecting at j. In our experiments,
we let Cj be zero and βj be one.

The second part of Algorithm 1 computes the optimal
selections by tracking through the values of Φa : b(k). Initially
a and b are set to represent the entire chain. It starts with the
full budget B and the empty selection set A. In the following

Input: Budget B, rewards Rj , costs βj and penalties Cj

( j ∈ V, |V| = n)
Output: Optimal selection of observations at A
begin

for 0 ≤ a < b ≤ n + 1 do compute La : b(0)
for k = 1 to B do

for 0 ≤ a < b ≤ n + 1 do
sel(0)← La : b(0)
for j = a + 1 to b − 1 do

sel( j)←
Rj(X j |X j)− Cj + La : j(0) + Lj : b(k − βj)

La : b(k)← max j∈{0, a+1,...,b−1}sel( j)
Φa : b(k)← arg max j∈{0,a+1,...,b−1}sel( j)

a← 0; b ← n + 1
k ← B
A←∅
repeat

y ← Φa : b(k)
if y > 0 then

A←A∪ {y}
a← y
k ← k − βy

else
break

until k ≤ 0

Algorithm 1: Corrected VoIDP algorithm for optimizing observa-
tion selection on chain graphical models.

loop, it finds the optimal selection y from Φa : b(k), and adds
it into the selection set A. Whenever a selection is made,
it spent a budget of βy and cuts the chain into two parts,
a : y and y : b. The searching of optimal observation will be
continued on the second subchain y : b. This process will
stop when the budget is used up. The bold-faced a ← y
is important because it makes the tracking to fall into the
correct domain in the whole table, but it was not in the
original VoIDP algorithm.

3. Gaussian Process-Based
Observation Selection

A Gaussian process (GP), by definition [7], is a collection
of random variables, and any finite number of variables in
the collection also has a joint Gaussian distribution. For
scheduling a sensor, we assume that the joint probability
of its observations at all the time points is a multivariate
Gaussian distribution:

P(XV = xV) = 1

(2π)n/2|ΣVV|1/2
e−1/2(xV−μV )TΣ−1

VV (xV−μV ),

(2)

where V denotes the whole set of the variable indices
with |V| = n. μV is the mean vector and ΣVV is the
covariance matrix. A subset A from V also satisfies that
XA ∼N (μA,ΣAA), where μA is a subvector of μV and ΣAA

is the relevant submatrix of ΣVV . This consistency property
is also known as the marginalization property.
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The nice property also holds in P(Xi | XA = xA), the
probability distribution of Xi conditioned on the observa-
tional values xA of a selected variable set XA. This posterior
conditional probability is also a Gaussian distribution with
conditional mean μi|A and variance σ2

i|A given by

μi|A = μi + ΣiAΣ
−1
AA

(
xA − μA

)
, (3)

σ2
i|A = Σii − ΣiAΣ

−1
AAΣAi, (4)

where μA is the mean vector of variable set XA, ΣiA, and ΣAi

are the corresponding submatrices of ΣVV . For instance, the
ΣiA is calculated by taking the ith row and the A columns of
ΣVV . μi and Σii can be considered as the prior mean and the
prior variance of the observations at i.

3.1. The Entropy Heuristic. The conditional probability
P(Xi | XA) carries very important information for
evaluating the quality of the selection set A, which can be
measured by the conditional entropy:

H(Xi |XA) = −
∫ ∫

P(xi, xA) logP(xi | xA)dxidxA

= 1
2

log σ2
i|A +

1
2

(
logπ + log 2 + 1

)
,

(5)

where P(Xi | XA) is assumed as a Gaussian probability
distribution. Note that the entropy is a monotonic function
of its variance σ2

i|A, which can be evaluated ahead of making
any observations (4).

The sensor scheduling problem becomes to select a subset
of time points at A (out of the variable index set V) to turn
on the sensor and to keep it off at all the other time (as of
indices in V \ A). The subset selection can be optimized
by minimizing the entropy H(XV\A | XA). This is also
equivalent to finding a subset A that maximizes H(XA), as
the chain rule for conditional entropy holds that H(XV\A |
XA) = H(XV) −H(XA). The optimization problem turns
out to be an NP-hard problem. To solve it, a greedy heuristic
is to iteratively find the next selection y∗i+1 ∈ V \Ai that has
the highest conditional entropy given the current selection
set Ai:

y∗i+1 = arg maxyi+1
H
(
Xyi+1 |XAi

)
. (6)

Algorithm 2 shows the greedy algorithm based on the
entropy heuristic. k is the size of the selection and the σ2

y|A
can be computed using (4). Because the log function is
monotonic, σ2

y|A is proportional to H(Xy | XA). That
means finding a selection at y that maximizes H(Xy | XA)
is equivalent to finding such a y that maximizes σ2

y|A.

The computation of σ2
y|A is expensive. Let |V| = n, there

are n times of these computations when i = 1, and (n−k+1)
times when i = k. Hence, Algorithm 2 has totally (2n − k +
1)k/2 times of evaluations of σ2

y|A.

3.2. The Mutual Information Heuristic. Another criterion for
optimizing the subset selection is the mutual information,

Input: covariance matrix ΣVV , selection size k
Output: selection set A(A ⊆ V, and|A| = k)
begin

A←∅
for i = 1 to k do

foreach y ∈ V \A do δy ← σ2
y|A

y∗ ← arg maxy∈V\Aδy
A←A∪ {y∗}

Algorithm 2: Greedy algorithm for maximizing entropy H(A).

which was originally proposed by Caselton and Zidek in [10].
The mutual information of a subset A denoted as MI(A) is
defined as follows, and it is actually the entropy reduction:

MI(A) = I
(
XV\A; XA

)

= H
(
XV\A

)−H
(
XV\A |XA

)

= H(XA)−H
(
XA |XV\A

)
.

(7)

The authors in [8] demonstrated the advantage of the
mutual information criterion over the entropy criterion
in sensor placement for a couple of spatial monitoring
applications. They found out that the mutual information
criterion led to a more intuitive sensor placement than the
entropy criterion did. The mutual information criterion
placed sensors in the central areas of a sensing space whereas
the entropy placed sensors mostly at the boundaries.

In contrast to the entropy-based selection maximizing
only the uncertainty of the selection set A, the mutual infor-
mation criterion maximizes the reduction of the entropy
over the rest of the variable space V \ A before and after
observing at A. That is, to schedule a sensor, we will find
a subset of time points at A∗ such that

A∗ = arg maxA⊂VMI(A). (8)

Optimization of the mutual information is also an NP-
complete problem. A greedy algorithm was developed in
[8] that selects the next variable y maximizing the mutual
information gain:

Δy =MI
(
A∪ y

)−MI(A). (9)

The greedy heuristic chooses the next selection that provides
the maximal increase in the values of mutual information.

In the context of Gaussian process and based on the
entropy equation in (5), (9) can be further deduced as:

Δy =MI
(
A∪ y

)−MI(A)

= H
(
y |A)−H

(
y |A

)

= 1
2

log2

⎛
⎝σ2

y|A
σ2
y|A

⎞
⎠,

(10)

where A means all the variable indices in V excluding A and
y, which can also be denoted as V \ (A∪ y).
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Input: covariance matrix ΣVV , selection size k
Output: selection set A(A ⊆ V), mutual information

gains Δ
begin

A←∅
foreach y ∈ V do Δy ← +∞; Φy ← 0
for i = 1 to k do

repeat
y∗ ← arg maxy∈V\AΔy

if Φy∗ == i then
break

else
A← V − (A∪ y∗)
Δy∗ ← 1/2log2(σ2

y∗|A/σ
2
y∗|A)

Φy∗ ← i
until 0
A←A∪ {y∗}

Algorithm 3: Greedy algorithm for maximizing mutual informa-
tion gain MI(A∪ y)−MI(A) using lazy evaluation.

An interesting note about the mutual information gain
Δy is that it is monotonically decreasing as the selection set
A gets larger. It inspired the enhanced greedy algorithm with
lazy evaluation [8].

The greedy algorithm with lazy evaluation for maximiz-
ing the mutual information is presented in Algorithm 3. We
rewrite it as in the context of the Gaussian process model.

Φy∗ records in which iteration Δy∗ is updated. The lazy
evaluation saves a lot of computation of Δy based on the
insight that the sequence of the mutual information gains
on a fixed y decreases as set A gets bigger. It will select the
y∗ if the maximal Δy∗ is updated in the current iteration,
otherwise it will update Δy∗ and Φy∗ and repeat the selection
process.

When |V| = n, Algorithm 3 has 2(n + k − 1) times
of evaluations of either σ2

y∗|A or σ2
y∗|A in the best case.

This is more efficient and scalable than Algorithm 2 when n
becomes very large.

Algorithm 3 is not only efficient, but also provides its
solution with a theoretic bound to the optimal solution.
Although the mutual information function in (7) is not
always increasing, the authors in [8] proved that it is still
a partially monotonic submodular function. According to
[13], a greedy algorithm, such as the Algorithm 3, which
optimizes a monotonic submodular function guarantees a
theoretical performance lower bound of (1−1/e)OPT, where
OPT is the optimal solution value.

After a subset of observations at A is selected, the con-
ditional probability distribution of an unobserved variable i
given the observations of XA can be computed as P(Xi |
XA). We will use its mean computed by (3) as the predictive
value of the observation variable Xi.

4. Comparison Experiments

In this section, we will compare the probabilistic graphical
model-based approach and the Gaussian process model-
based approach in solving the subset selection problem for

scheduling a sensor. Specifically, we want to select a subset of
time points in size k out of totally 24 time points for turning
on a sensor to sense and keeping it off at the other time.
For convenience, in the following experiments, we will refer
to the probabilistic graphical model-based approach simply
as the HMM-based method, and the Gaussian Process-based
approach simply as the GP-based method. The performance
is measured using predictive accuracy for the unobserved
time points in terms of the root mean squares (RMS) error.
The methods are compared for accurate observations, as well
as erroneous observations.

4.1. Experimental Setup. A hidden Markov model and a
multivariate Gaussian model were trained using the temper-
ature time series data collected in the Intel Berkeley Research
Laboratory [14]. All the data were preprocessed for missing
samples and discretized into 10 bins of 2 degrees Kelvin.
The full dataset consists of temperature samples combined
from three neighbored sensors for 19 days. When training the
chain graphical model, we set four latent states representing
the different time periods 12 am–7am, 7 am–12 pm, 12 pm–
7 pm, and 7 pm–12 am. The whole dataset was also randomly
split into the test set and the training set with the ratio 1 : 9.
A small error-injected test dataset was also generated. The
errors were taken randomly from a normal distribution with
mean zero and variance 0.25.

We use these notations in the figures: “hmm voidp” rep-
resents the HMM-based selection approach by our improved
VoIDP algorithm; “gp entropy” represents the GP-based
selection approach by employing the entropy heuristic, and
“gp mutual” for the GP-based mutual information heuristic.

4.2. Results and Discussion. Figures 1(a) and 1(b) show the
results on the full dataset. Generally speaking, the more
observations are selected the less RMS prediction errors
are achieved for both the HMM based and the GP based
approaches. In Figure 1(b), the mutual information heuristic
holds the competition with the entropy heuristic until about
10 observations are selected. We have mentioned that the
mutual information function is not always monotonically
increasing as the selection set gets bigger. The mutual
information gains and its values are shown in Figures 2 and
3, respectively. It can be seen that the mutual information
heuristic lost its advantage after 12 observations are selected.
It explains why the mutual information heuristic only has
an advantage over the entropy heuristic between the 2 and
5 observations, but loses afterwards on the test dataset, as
shown in Figure 1(c).

The GP entropy-based selection is compared with the
HMM-based selection on the test data in Figure 1(d). The
GP-based approach beats the HMM-based approach in terms
of predictive accuracy on the test data.

Figures 4(a)–4(c) examine how the erroneous observa-
tions affect these model-based selection approaches. In the
figures, the circles and crosses denote the results, the dash
and solid lines present the trends by doing regression based
on the results. It shows that both GP based heuristic methods
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Figure 1: Prediction error versus number of selected observations on full dataset (a, b), and on test dataset (c, d), given by the HMM-based
and GP-based selection approaches.
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Figure 2: Mutual information gains on observations.

suffer big losses in predictive accuracy given the error-
injected observations. However, the HMM-based approach
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Figure 3: Mutual information values on observations.

shows a very robust performance with a little increased of
the prediction errors.
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Figure 4: (a–c) Comparison of prediction errors on the original and error-injected test data by HMM-based selection, GP-based entropy
heuristic, and GP-based mutual information heuristic selections, respectively; (d) comparing HMM-based selection against GP-based
entropy heuristic selection on the test data with erroneous observations.

Despite both the GP-based heuristics perform poorly
with erroneous observations, the mutual information heuris-
tic is slightly more stable. In Figure 4(c), the two trend lines
are parallel to each other whereas Figure 4(b) shows a big
difference in performances by the entropy heuristic before
and after the errors are injected into the observations.

The GP-based entropy heuristic is compared with the
HMM-based selection under the erroneous observations
because of its relatively lower prediction error over the
mutual information heuristic. Figure 4(d) illustrates the
result. It shows that the GP-based entropy method tends to
maintain a constant error as the number of observations
increases, meaning more observations do not help the
predictive accuracy. Conversely, the HMM-based approach
has a decreasing trend on predictive accuracy as more
observations are added. After 16 observations the HMM-
based selection method outperforms the GP-based method
in terms of the RMS prediction errors.

The robustness against observation errors exhibited by
the HMM-based selection approach is partly attributed to
the conditional independence property provided inherently

by the corresponding probabilistic chain graphical model.
The observations on the chain graphical model cut the entire
chain into smaller subchains, and the observations on one
subchain will not directly affect the predictions on the other
subchains. This property minimizes the effect caused by the
erroneous observations. But for the GP-based approach, the
predictions take all the observations directly into account,
which therefore increases the chance of being affected by the
errors in observations.

5. Conclusions

In this paper, we tackle the sensor scheduling problem by
selecting a subset of time points to observe in order to
make the most accurate predictions for the unobserved time
points. We compare two model-based selection approaches,
the probabilistic graphical model-based approach, partic-
ularly with HMM, and the Gaussian process model-based
approach employing both entropy and mutual information
greedy heuristics.
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The results show that the GP-based approach performs
better than the graphical model-based approach in terms of
the predictive accuracy with accurate observations. But when
small errors are injected into the observations, the GP-based
selection method performs very poorly. In contrast, the
graphical model-based approach demonstrates more robust
and stable performance given the erroneous observations,
and outperforms the GP-based approach when more obser-
vations are selected.
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