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Abstract—The VoIDP algorithm is the first optimal algorithm
for efficiently selecting the subset of observations in chain graph-
ical models [10]. The original VoIDP algorithm has a mistake
in the process of recovering the optimal selections, and fails to
produce correct outputs. In this paper, we present an improved
version of the algorithm; which fixes the mistakes and verifies the
solutions in experiments. Further more, we discuss some recent
works in the area of subset selection problems, and present a
simplified solution for computing the maximum expected total
reward for a sub chain under certain circumstances.

I. INTRODUCTION

A typical problem in real world applications is the opti-

mization of information gathering. Wireless sensor networks,

for example, is a powerful tool for monitoring spatio-temporal

phenomena. However, its limited power source makes sensing

expensive. It is a trade off between obtaining more and useful

information, versus making less observations. Scheduling a

sensor to turn on to observe, then to turn off to save energy

is a very big optimization problem.

Chain graphical models such as Hidden Markov Models

(HMM) can be trained using data time series from sensors.

The observation variables of 24 time points roll over onto

the chain, if each hour in a day is treated as a time point

for observation. When a selection is made at a time point

for observation, the distributions of observation variables after

this point will become certain to some extent. The sensor

scheduling problem then turns into optimizing a subset of

observations. The selection in the chain graphical model is

to minimize the uncertainty overall. The VoIDP algorithm is

the first optimal algorithm for efficiently selecting a subset of

observations in chain graphical models [10]. It is a dynamic

programming approach to optimize the value of information.

However, during our evaluation of this algorithm for the

subset selection problem in chain graphical models, we found

that following the exact algorithm could not give desirable

solutions. We were hence motivated to improve on it.

We identified a critical overlook in the original VoIDP algo-

rithm; which causes the failure. We will present the improved

version of VoIDP algorithm in Section III. In Section IV, we

evaluated and verified the improved VoIDP algorithm and its

solutions empirically. In Section V, we discuss a situation

where the computation in the algorithm can be simplified.

We will give a brief review in Section VI regarding some
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interesting works recently published in the area of optimizing

the information gathering. We will start in the following

Section to give a brief description of the optimization problem.

For convenience, same notation will be used as does in [10].

II. PROBLEM STATEMENT

The Algorithm 1 in [10] implements a dynamical pro-

gramming approach to efficiently select an optimal subset

of the variables to observe in chain graphical models. The

algorithm is named as “VoIDP” because of its use of Dynamic

Programming to optimize the information value. In a chain

graphical model such as HMM, each observation variable

has a distribution over the hidden states. When a variable

is observed, the value will affect the distributions of the

following variables along the chain. As more observations are

obtained, the distributions over all the variables on the chain

will become more certain. Also, the problem of optimizing the

selections of observations across the entire chain can be cast

in the following subset selection problem...

Suppose in a collection of random variables XV =
(X1, . . . ,Xn). A subset of the variables, XA = (Xi1 , . . . ,Xik ) is

observed as xA . The posterior distribution over all variables

P(XV | XA = xA) can be computed and transformed to a total

reward R(P(XV | XA = xA)). Since the future observations of

XA are unknown, the expected total reward is there for used

to measure the quality of the subset selection.

Hence, the subset selection problem is to select a subset

A∗ ⊆ V which maximizes,

A
∗ = argmaxA ∑

xA

P(XA = xA)R(P(XV | XA = xA)) [10]

The expected total reward R(A) is also the sum of all

the expected local rewards, where an expected local reward

R j(X j |XA) equals to ∑
xA

P(A = xA)R j(X j | xA). A local reward

R j(X j | xA) depends on P(X j |XA = xA), which is the marginal

distribution of variable X j conditioned on observations XA =
xA . The authors in [10] choose residual entropy to measure

the uncertainty of the marginal distribution of variable X j , and

the objective of the optimization problem thus becomes one as

how to minimize the total residual entropy, which is equivalent

to maximize the expected total reward.

The probabilistic inference techniques in chain graphical

models benefit the evaluation of the local rewards. For ex-

ample, in Section IV a HMM based on sensors’ temperature

time series has n time steps. The observation on each time

step is determined by a certain number of hidden states,

and the hidden variables Xi form a chain conditional on the
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observations. To evaluate the marginal distribution of X j, if

only the observations made no later than the time step i are

considered, it is referred to as the filtering case. Otherwise,

if observations made anywhere along the entire chain can be

taken into account, this situation is referred to as the smoothing

case. The conditional independence property of the graphical

model simplifies the evaluation of P(X j | XA ), which also

implies that the expected total reward R(A) for the entire chain
can be decomposed into the expected rewards for sub chains

[10].

In papers [7], [10], besides the subset selection problem

briefly described above, the authors also addressed the condi-

tional planning problem, which is not the focus of this paper.

III. IMPROVED EFFICIENT ALGORITHM FOR OPTIMAL

SUBSET SELECTION IN CHAIN GRAPHICAL MODELS

In this section, we will first give a brief description of the

original VoIDP algorithm as appearing in papers [10], [7],

then, discuss the reason for and present the improved version

of this algorithm.

A. Original VoIDP Algorithm

In the subset selection problem, the target is to decide a

subset of the variables to observe before any observation is

made in order to predict the overall observation most accu-

rately based on the observed values of the selected variables.

In the running example, before a sensor is deployed, we want

to find a number of time points out of 24 to pre-schedule its

sensing for a day.

The authors in paper [10] developed VoIDP, the first optimal

algorithm for efficient subset selection in chain graphical mod-

els in both filtering and smoothing cases. For convenience, we

have attached its pseudo code shown in figure 1. The algorithm

implements a dynamic programming approach that is inspired

by the reward decomposition property briefly discussed in

Section II. It also considers some other factors in the subset

selection process, such as operating within a limit budget B,

the cost β j of making observations, and associated penalties

C j applied to the expected total reward. The authors proved

the time complexity of this algorithm given budget B in terms

of evaluations of expected local rewards is ( 1
6
n3 +O(n2))B.

The main body of the algorithm is to compute a number

of tables of La:b(k) which is denoted as the optimal expected

total reward that can be achieved for the sub-chain a : b with

the budget k. And L0:n+1(B), therefore, denotes the optimal

expected total reward for the entire chain with full budget B,

while La:b(0) is the total reward without any additional ob-

servations. The Λa:b(k) stores the choice that realizes La:b(k).
The choices could be either the index of next variable to select

or −1, which means no variable should be selected. In the

innermost loop, sel( j) is the expected total reward for the

sub chain a : b obtained by observing at j, and sel(−1) is

the reward if no observation is made. The optimal solution of

subset selection is obtained by tracing the quantities in Λa:b(k).
When we evaluated the algorithm, however, it failed to give

desirable outputs (see table I) in the experiment. And we were

Input : Budget B, rewards R j, costs β j and penalties C j

Output : Optimal selection A of observation times

begin

for 0≤ a < b≤ n+1 do compute La:b(0); end

for k = 1 to B do

for 0≤ a < b≤ n+1 do

sel(−1) := La:b(0);
for j = a+1 to b−1 do sel( j) := R j(X j|X j)

−C j +La: j(0)+L j:b(k−β j); end

La:b(k) = max j∈{a+1,...,b−1,−1}sel( j);
Λa:b(k) = argmax j∈{a+1,...,b−1,−1}sel( j);

end

end

a := 0; b := n+1; k := B; A := /0;
while j 6= −1 do

j := Λa:b(k);
if j ≥ 0 then A := A ∪{ j}; k := k−β j; end

end

end

end

Fig. 1. VoIDP algorithm for optimal subset selection (Krause and
Guestrin, [10])

thus motivated to improve on it. Following is an improved

version of the VoIDP algorithm.

B. Improved VoIDP Algorithm

The core part of VoIDP algorithm is to recursively compute

the optimal expected total reward La:b(k) for the sub chain a : b
using the budget k. The base case is simply La:b(0), and the

recursion for La:b(k) is either La:b(0) or max
a< j<b,β j≤k

{sel( j)}. It

means that we can choose not to spend any more of the budget

to reach the base case, or we can select the optimal observation

at j, which depends on the obtained expected total rewards.

In our experiments, we let reward penalty C j be zero, and let

selection cost β j be one. In this situation, the computation of

La:b(k) can actually be further simplified. We will discuss this

in more details in Section V.

According to the reward decomposing property (see in [10]),

selecting an observation will divide the computation of ex-

pected total reward of the chain into expected total reward

computations along the two sub chains separated by the

observation. This is reflected in the equation (1) of computing

sel( j) which is the expected total reward for chain a : b when

making an observation at j.

sel( j) := R j(X j | X j)−C j +La: j(0)+L j:b(k−β j) (1)

The total reward of observing at j for the chain a : b is the

sum of the reward of observing j at itself, the optimal total

reward achieved for the sub-chain a : j without any spending

and the optimal total reward achieved for the sub-chain j : b
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with the budget k− β j and minus the reward penalty C j. In

this way, all the selected observations will fall into one side

j : b, and on the other side a : j there is no selection yet.

The variable selection candidate j separates these into two

sides. After all the tables La:b(k) and Λa:b(k) are computed,

we can trace back to find all the optimal selections in Λa:b(k).
One key point here is that after we find an optimal selection

at j, the entry for locating the next optimal selection should

be at Λ j:b(k−β j). The pseudo code of the improved VoIDP

algorithm is illustrated in figure 2. For convenience, we use

the same notations as in figure 1.

Input : Budget B, rewards R j, costs β j and penalties C j

Output : Optimal selection A of observation times

begin

for 0≤ a < b≤ n+1 do compute La:b(0); end

for k = 1 to B do

for 0≤ a < b≤ n+1 do

sel(−1) := La:b(0);
for j = a+1 to b−1 do

sel( j) := R j(X j|X j)−C j +La: j(0)
+L j:b(k−β j);

end

La:b(k) = max j∈{a+1,...,b−1,−1}sel( j);
Λa:b(k) = argmax j∈{a+1,...,b−1,−1}sel( j);

end

end

a := 0; b := n+1; k := B; A := /0;
while k > 0 do

j := Λa:b(k);
if j ≥ 0

A := A ∪{ j};
a := j;

k := k−β j;

end

if j < 0

break;

end

end

end

Fig. 2. Improved VoIDP algorithm for optimal subset selection

In the improved version, the main change is reflected in

the second part. After La:b(k) and Λa:b(k) are all computed,

we need to find out the optimal selection from the series of

Λa:b(k) tables. Initially, it will start from the entire chain with

the full budget B and an empty selection set A . The first

selection will thus be Λ0:n+1(B). If it is set to j, then the next

selection should be from Λ j:b(k−β j) instead of Λ0:b(k−β j)
as in the original VoIDP (see figure 1). This slight change,

however, leads to a dramatically improved outputs (see table I).

As discussed in the last paragraph, the way of tracing back

the optimal selections is actually determined by how they

were calculated. With this crucial change in the process of

recovering optimal selections, the improved version of VoIDP

produces desirable outputs. We have verified the effectiveness

of those optimal selections through experiments. The results

will be presented in the next section.

IV. EXPERIMENTS

In this section, we first compare the selection outputs of the

original VoIDP algorithm with those of our improved version.

Then, we evaluate the optimal selections by the improved

VoIDP against the ones generated by the greedy heuristic and

uniform spacing methods. We use the temperature time series

data set, which was also used in paper [10]. The data set was

collected from a network of wireless sensors deployed in the

Intel Berkeley Research Lab [1].

A. Optimal Observation Selection

One of the research problems in wireless sensor networks is

that how a sensor should be scheduled for sensing in order to

both save its power and, in the meantime, obtain the most

informative observation possible. The goal of the optimal

subset selection, for example, in this running setting is to select

k out of 24 time points of a day for a sensor to monitor the

indoor temperature, of which the readings will be the most

informative.

We followed the experimental setting for temperature time

series in paper [10], though the data set we used would not be

from the exactly same sensors as they chose. All the data were

pre-processed for missing samples and discretized into 10 bins

of 2 degrees Kelvin. We got 45 sample time series combined

from the data collected by three adjacent sensors (#3, #4, and

#6) lasting 19 days. We used them to train a HMM that also

had four latent states representing from 12 am - 7 am, 7 am -

12 pm, 12 pm - 7 pm and 7 pm - 12 am. All the input rewards

used both in the original VoIDP and the improved version were

computed from this trained chain graphical model under the

filtering case, with assumed unit cost and zero reward penalty

for making any observations.

Table I shows the comparison of the outputs supposed to

be the optimal selections of observational time points from

both algorithms and their relevant rewards. The higher reward

and the better quality of selection of the improved algorithms

are quite evident. As can be seen from the table, the original

VoIDP algorithm repeatedly selects the first time point after

budget 5, which is apparently a waste of the budget. We will

further evaluate the solutions given by the improved VoIDP

algorithm.

B. Performance Comparison

Since the original VoIDP algorithm does not produce sat-

isfying outputs, we will not evaluate it in the following

experiments. To examine the performance of the improved

VoIDP algorithm, we also use the greedy heuristic and uniform

spacing methods for comparison in our experiments.

Basically the greedy method makes a selection each time

greedily from one of the sub-chains divided by the previously
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TABLE I
OPTIMAL OBSERVATION SELECTIONS BY ORIGINAL VOIDP AND THE IMPROVED VOIDP (IN THIS EXAMPLE WE LET UNIT COST AND ZERO PENALTY

WHEN SELECTING ANY OBSERVATIONS).

Budget
Optimal Observation Outputs (time point ranges from 1 to 24)

Original VoIDP Improved VoIDP

outputs reward reward outputs

1 6 −32.2979 −32.2979 6

2 5,6 −31.2704 −29.1210 5,14

3 4,5,6 −30.3201 −26.8453 4,10,17

4 3,4,5,6 −29.4919 −25.1229 3,7,12,18

5 1,3,4,5,6 −28.5762 −23.7130 1,5,9,14,19

6 1,1,3,4,5,6 −28.5762 −22.5522 1,5,8,12,16,20

7 1,1,1,3,4,5,6 −28.5762 −21.6115 1,5,8,11,14,17,21

8 1,1,1,1,3,4,5,6 −28.5762 −20.8333 1,4,6,9,12,15,18,21

selected time points. For example, assuming unit selection

cost, if k = 1, then the best observation will be selected by

greedy heuristic across the entire chain in terms of expected to-

tal reward. If k= 2, it will pick a best observation respectively

for each of the sub chains divided by the optimal observation

selected in the k = 1 case. It then will choose the second

optimal observation among the two observations. This process

can be deduced into the k = n case. The uniform spacing

heuristic evenly distributes the k observations across the entire

chain.
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Fig. 3. Baseline performance comparison: The relative improvement of
the uniform spacing method, the greedy heuristic, and the improved VoIDP
algorithm over the baseline reward which is the expected total reward for the
entire chain without any observations.

In figure 3, all the performance results are compared against

the baseline, which is the expected total reward for the entire

chain without any observation. The performance is measured

as an increase of the expected total reward, which is equivalent

to decrease of expected entropy for the entire chain. It shows

that the optimal selections given by the improved VoIDP

algorithm outperform those by both the heuristics. To give

a better picture of how much the improved VoIDP algorithm

outperforms the greedy heuristic, we then compare their rela-

tive improvements against the uniform spacing. The result is

illustrated by figure 4. Here, performance is measured as an

increase of expected total reward, with the uniform spacing as

the baseline.
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Fig. 4. Relative performance comparison between the greedy heuristic and
the improved VoIDP: The relative improvement of the greedy heuristic and
the improved VoIDP algorithm over the performance of the uniform spacing
method.

As shown in figure 4, the difference of performance im-

provement between the optimal selections given by the im-

proved VoIDP algorithm and those by greedy heuristic is

obvious, when fewer number of observations are selected. It

can be seen that if k is less than one third of all possible ob-

servations, the optimal gain by the improved VoIDP algorithm

is more than one percent over that by the greedy heuristic.

And the gain remains even when k reaches about two thirds

of all possible observations. After that, the optimal subset
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and the subset selected by the greedy heuristic are almost

identical. These results empirically verify the effectiveness

of the optimal selections produced by the improved VoIDP

algorithm.

V. DISCUSSION

The VoIDP algorithm was claimed in [10] as the first op-

timal algorithm for nonmyopically computing and optimizing

value of information in chain graphical models. This algorithm

appears at least in [7], [10], [5] and remains in the same form.

We evaluated the algorithm for subset selection problem as

appearing in [10] and found the issue illustrated by table I.

We think it necessary to improve on the algorithm.

The computation of La:b(k) (see notations in III-A) in

the improved VoIDP algorithm can be further simplified. If

there was no penalty towards the total reward of making

any observations, which means C j = 0, then sel( j) := R j(X j |
X j)+La: j(0)+L j:b(k−β j). The computation of La:b(k) would
become the following, because in this case any sel( j) would

be bigger than La:b(0).

La:b(k) = max
j:a< j<b,β j≤k

{R j(X j | X j)+La: j(0)+L j:b(k−β j)}

(2)

In other words, if there were no reward penalties, then

the expected total reward for sub chain a : b after making

any additional observations would always be larger than that

of making no additional observations. In this situation, the

algorithm (see figure 2) does not need to compute sel(−1) in

the inner loop, and hence La:b(k) does not need to compare

with La:b(0).

VI. RELATED WORK

The original VoIDP algorithm as an efficient tool for se-

lecting observation to maximize the value of information in

chain graphical models was first introduced in [7], and was

further presented in [10]. Although the optimization problem

can be effectively solved for chain graphical models, it is much

harder for more general graphical models. The authors proved

that the problem of subset selection for even discrete polytree

is computational intractable. There are some other approaches

suggested for selecting observations in graphical models, but

the authors of [10] argued that either some of them, such

as the greedy methods, do not have theoretical performance

guarantees, or others are running in exponential worst-case

time, although they could be applied to more general graphical

models. Besides developing algorithms to schedule a single

sensor, the authors in [7], [10] also studied scheduling multiple

sensors whose measurements are correlated, in which case the

graphical model becomes more general, consisting of multiple

chains.

The optimization problem of selectively gathering informa-

tion with a variety of objectives exists in many tasks of real

world applications. When, for example, deploying a wireless

sensor network to monitor a spatio-temporal phenomenon,

we want to choose locations and time points to deploy and

schedule the sensors in order to maximize the information

gains, and in the meantime minimize its communication costs.

A doctor may want to have a most effective diagnostic plan

designed at a minimal cost for a patient. Nowadays, the

Internet provides a vast amount of information, but people

would like to spend a small amount of time to read the

most important news or useful information. Several efficient

algorithms have been developed to address such problems.

In spatial monitoring such as in [15], [19], the sensor

placement problem can be modeled using Gaussian Processes

with a mutual information criterion, which is a submodular

function. Submodularity, an intuitive diminishing returns prop-

erty, can be exploited to develop faster, strongly polynomial

time combinatorial algorithms with provable theoretical per-

formance guarantees ([20], [4], [6], [13]). It turns out that

many observation selection problems ([16], [8], [11], [18],

[3]) can utilize this important structural property to develop

efficient and near optimal algorithms incorporating greedy

heuristic. However, in a more complex setting where another

criterion besides the informativeness needs to be considered

such as communication cost, greedy algorithms perform ar-

bitrarily badly [12]. The authors of [12] presented a non-

myopic algorithm pSPIEL which can near-optimally trade off

between information and communication cost. Another non-

myopic algorithm Saturate [14] was designed to minimize the

uncertainty that could be exploited by adversaries. In [21],

[17], it is shown that submodular functions are applicable to

optimization of informative paths for multiple robots. Submod-

ular functions have inspired researchers not only to develop

efficient algorithms but also to study theoretical foundation of

solving complex combinatorial problems. The authors in [2]

introduced an algorithmic framework for studying combina-

torial problems with multi-agent submodular cost functions

and presented an approximate algorithm with theoretic lower

bound.

There is another alternative approach to selection problems.

Other than choosing according to a model (open-loop) before

any observations are obtained, sequential planning (closed-

loop) decides on the next selection based on previously

observed values. In paper [9], the authors compared a sequen-

tial algorithm sequentially optimizing mutual information in

Gaussian Processes with the model based selection approach,

and quantified the advantage of the sequential strategy. A con-

ditional planning based algorithm for selecting observations in

chain graphical models was also presented in [7], [10].

VII. CONCLUSIONS

We have presented an improved version of VoIDP algorithm

and discussed the reason for doing so. It is a slight-change

but significant improvement to the original VoIDP algorithm,

because it is critical for producing the desired optimal selec-

tion. The performance of the improved algorithm has been

empirically verified. We also discussed a case when there

are no reward penalties, the expected total reward of making

any observations will always be larger than that of making

no observations. This is used to simplify the computation of
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the optimal expected total reward for a sub chain. According

to the review of recent works, submodular functions have

spawned great interest in selection optimization in the past.

Optimizing monotonic submodular functions strongly speeds

up combinatorial algorithms. We are currently focusing our

research in this direction.
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